
THE JOURNAL TJ

SALWA ALZAHMI, SID SHAKYA, IVAN BOYD

The increased speed with which services
can be realised via software is a key
contributor to the acceleration of
telecommunications service innovation.
Software also facilitates the easy
adaptation and customisation of services,
enabling operators to easily offer multiple
variants of the same underlying service to
different customer segments. However,
whilst software is a key enabler of fast
service innovation and flexibility, operators
quickly discover that the maintenance of
software is complex and very expensive.

A recent estimate by Accenture suggests
60% of global software spend (equivalent
to ~$50Bn) is invested in software
maintenance [1]. Thirty percent of this total
software maintenance cost is associated
with software comprehension. This is an
astonishing figure given enterprises have
either developed the software themselves
or outsourced the software development.
Why then do enterprises have to spend so
much effort comprehending the software
they commissioned?

Part of the answer lies in the inherent
complexity of software itself. However,
other major contributors are insufficient
governance of the software development
process and a lack of comprehensive
documentation of the final software
product. Time-to-market pressures
habitually lead to compromises in the
investment in documentation, which is
often seen as something that can be
completed later; unfortunately, that later
occasion seldom occurs. Thus very often
the only comprehensive documentation of
software, which is essential to plan new
versions and undertake maintenance, is

the software source code itself. Source
code created by one software engineer is
often difficult for another software
engineer to understand and follow.

It is important for the telco community to
understand the latest developments in the
software industry which are aimed at
improving software governance and the
automation of documentation creation.
Telcos need to adopt these state-of-the-art
tools and technologies to improve the
quality and reliability of their services and
to minimise the cost of software creation
and maintenance, primarily by maximising
reuse of software designs and the
software that realises those designs. In
this article, we present a review of one
such technology, known as Software
Product Line (SPL). SPL is increasing being
adopted by some leading global
enterprises to improve the speed of
service development and service flexibility.

Software product line
SPL is an innovative software governance
and reuse approach that introduces a
systematic software planning strategy.
This also helps enterprises address the
challenges of software maintenance. The
SPL methodology is focused on
constructing similar software products
from the same shared software assets,
where the goal is to build highly
customisable applications that can satisfy
the needs of a particular business domain
or customer segment.

SPL is an evolution of the traditional
software development life cycle. It
introduces a robust technique which
enables the planning and creation of

Volume 11 | Part 2 - 2017

28

SALWA
ALZAMI,
SID SHAKYA,
IVAN BOYD
Telecoms and
software

TRANSFORMING
TELECOMMUNICATIONS
SERVICE EXECUTION
Software is increasingly
underpinning the services
enterprises offer to customers
and the operational processes
which deliver and support those
services. This is particularly true
in the telco sector where
innovative technologies such as
Software as a Service, big data,
cloud computing and Network
Function Virtualisation (NFV) are
further reducing the reliance of
operators on specialised
hardware for service execution
and support.

INFORM NETWORK DEVELOP

reusable software units at the start of the
software development. A key aspect of
SPL, and one which distinguishes it from
most other software development
methodologies, is the comprehensive
scope of reuse which SPL enables. SPL
aims to reuse all the types of software
assets and artefacts involved in the
development lifecycle, such as user
requirements, architectures and test plans,
not just source code.

The concept of product lines dates back to
1968, when McIlroy [2] presented the idea
of software mass customisation in order to
make software components available to
different machines and users. Later in
1972, Parnas [3] introduced the concept of
developing program families, instead of
developing products consecutively. He
mentioned the importance of studying the
common properties of the set of systems
and then determining the unique properties
of the individual family members.

Key concepts
SPL is defined by two development
processes [4] – domain engineering and
application engineering.

Domain engineering creates a reusable
software platform whereas application
engineering derives different versions of
the product from this platform.

The reusable software platform consists of
different software assets such as
requirements models, architectural models,
software components, test plans, and test
designs. These software assets are defined
as common or variable type depending
upon whether they are compulsory or
optional across different versions of the
product.

The well-known multiple-views software
architecture style in software engineering
can be applied to SPL. Here, each different
types of software asset can be structured
in its own view, such as requirement view,
architecture view, etc. Each of these views
are normally owned by a stakeholder. The
stakeholders can use the views to get a

clear understanding of the current state of
the system, and from their own specific
prospective. The view can be defined
succinctly and comprehensively using
available modelling languages.

As mentioned before, in domain
engineering process, some of the software
assets are considered as kernel
(i.e.common assets to all products), while
assets that vary across the products in the
line are either identified as optional (nice to
have) or variant (alternative of choices). A
SPL variation point is placed in each asset
to identify which variant has to be used for
a specific software version.

A group of software assets defining a
specific capability or functionality are
grouped as a feature. These features are
normally identified by a domain expert
during a domain analysis process. Each
new software product created by SPL is
defined by a unique combination of
features. The relationship between features
are captured in a feature model which
defines the product line.

As stated before, the feature model and the
reusable software assets created during

domain engineering process is fed to the
application engineering process. Here,
different features from the feature model
are selected to determine which software
assets will be included and configured in a
new product. The output of this process is
a collection of configured software assets,
typically a new (version of) product or
software, ready to be deployed.

Application
The companies that reported on their
experiences of implementing SPL have
listed a number of benefits, including
significant reduction on time-to-market.
For example, Boeing reported improved
affordability, quality, and system timeliness
by means of SPL. Market Maker Software
AG reported that SPL helped it to reduce
the maintenance costs by 60%. Cummins
reported incredible reduction in its time-to-
market, from one year to one week [5] [6].

SPL engineering is a growing software
engineering sub-discipline, and many
other organisations including Philips,
Hewlett-Packard, Nokia, and Raytheon are
using it to achieve extraordinary gains in
productivity, time-to-market, and product
quality.

THE JOURNAL TJ

29TRANSFORMING TELECOMMUNICATIONS SERVICE EXECUTION

Figure 1: Multiple levels of SPL software assets for the NFV of a connectivity service.

THE JOURNAL TJ

SALWA ALZAHMI, SID SHAKYA, IVAN BOYD

How is the SPL methodology applied? –
NFV application
To demonstrate the SPL methodology, we
present an application from the
telecommunications industry on building a
customised virtualised network function
platform.

NFV aims to address cost reduction and
flexibility in network operations whilst
enabling innovative network service
delivery models. The network functions
(NFs) are implemented as software running
over a virtualised infrastructure and
provisioned on a service-by-service basis.
These NFs are chained together to provide
network services which are deployed
either in a data centre or via the cloud. In
an NFV environment, a Service Function
Chain (SFC) is used to describe the various
NFs and the order in which they must be
executed. NFV needs to adapt to ever-
changing user and service requirements
and the dynamic network context. By
building a highly customisable NFV
platform, less rework is required to deploy
different versions of a service for different
requirements and constraints.

NFV can benefit from SPL by adopting a
systematic method for customising
network services to accommodate diverse
requirements from users and network
providers. In particular, SPL can enable the
auto-configuration of the SFC workflow to
accommodate the different options
available in different deployment.
Additionally SPL facilitates the systematic
organisation of the reusable NF
components and the design of the SFC
workflow such that the initial design
encompasses both the kernel and optional
connections and provides cost effective
service chain configurations.

As shown in Figure 1, each SFC definition
is considered as a product line that has:
1. Its own feature model (dotted boxes are

optional features and bold are kernel
features).

2. Its architecture model, consisting of one
or more network services related to the
features, defined in an SCF workflow.

3. Its NF components for each services.
4. The software artifacts (such as codes,

scripts, configurations, etc)
implementing the NF components.

Figure 2 shows three examples of SFC
connectivity service instances that are
derived from the original SPL SFC
connectivity workflow (Figure 1). Based
on the requirements, any one of them can
be configured and deployed. As shown in
Figure 2, load balancer as a kernel feature
appears in all three SFC instances of the
connectivity service, whereas the content
filtering as an optional feature might
appear in some instances. On the other
hand, any connectivity service should
have a least one security feature.
Therefore, either the firewall and/or the
virus scanner, which are variant features,
should appear in any SFC connectivity
instance.

The SPL approach to NFV implementation
not only enables the proper planning of
NFV platform software artifacts, but it also

enables a robust customisation of SFC
services that can adapt rapidly to
situations, such as fluctuations in the
network execution environment, service
failures and change in end-user or NF
vendors’ requirements.

Some challenges
There are some challenges that needs to
be addressed when adopting the SPL
methodology. These include:
• The complexity of managing the

variability information.
• Lack of suitable tools to fully support

the SPL methodology.
• Legacy systems where knowledge of

the architecture and software
components is not available.

• The difficulty of implementing a new
way of working when development
teams may not want to move away
from their current comfort zone.

In the next section, we have a tool that
addresses some of these challenges is
described.

Volume 11 | Part 2 - 2017

30

Figure 2: Multiple instances of SFC connectivity service.

INFORM NETWORK DEVELOP

EBTIC SPL approach
EBTIC is an ICT research and innovation
centre established by Etisalat, BT, and
Khalifa University and supported by the
United Arab Emirates ICT fund. It is located
at the Abu Dhabi Campus of Khalifa
University with management and research
staff from BT, Etisalat and Khalifa
University. EBTIC aims to advance
intelligent systems technologies for the
Next Generation Networks and Next
Generation Network-enabled ICT
applications and services, in order to put in
place the support infrastructure to
facilitate, develop and enable the digital
networked economy in the United Arab
Emirates and beyond [www.ebtic.org].

EBTIC partners, BT and Etisalat, recognised
the importance of software governance to
their businesses. High quality software
solutions, improved software
comprehension and maximisation of reuse
were recognised as key success factors in
the delivery of innovative business services
faster and with increased flexibility. Thus,
BT and Etisalat commissioned research by
EBTIC which lead to the development of
the EBTIC-SPL tool described in this
section and currently being trialled.

EBTIC’s SPL tool is a novel agile solution
that provides an in-house SPL-based
software governance platform. It
recognises the emergent needs of
supporting product family development by
telcos both for forward-development of

new software systems and the
maintenance and upgrading of legacy
systems. The tool was developed
specifically to overcome some of the
challenges of adopting SPL listed at the
end of previous section.

As shown in Figure 3, the four fundamental
services that the SPL tool provides for
system stakeholders are:
1. An SPL-based design environment that

supports the SPL domain engineering
process within an enterprise in order to
develop the software assets of the
product line. The environment enables
the modelling, in multiple-views style, of
common and variable software
artefacts and maintains the traceability
links between them. It accommodates
different software architecture
paradigms (object-oriented,
component-based, and service-based
architecture).

2. A reverse engineering capability that
enables SPL implementation for the
existing/legacy systems.

3. An SPL production that enables the
creation of different products by auto-
configuring the product line
multiple-views design models (triggered
through selection of the required feature
set). The tool maintains consistency
between product variants at the
production process to ensure the
integrity and validity of the final
generated product. Model
transformation techniques are

incorporated in this process to
implement changes in the concrete
artefacts.

4. A traceability capability which captures
traceability links between product line
artefacts to support the various
activities of the application production
processes - these links also support the
consistent evolution of the product
line – and a reuse analysis capability
incorporated at the backend to locate
possible reusable and variable software
assets.

What benefits does the tool deliver?
The tool addresses two key challenges
facing telcos when developing software-
based products, namely:
• Software design approaches that

improve product quality and time-to-
market. To accelerate
concept-to-market requires a robust
software design strategy that speeds
software development and deployment.
This replaces the ad-hoc techniques
that focus only on code reuse.

• Automatic creation of comprehensive
and easy to understand documentation.
Without a full understanding of the
developed software, a telco’s goal of
maximising reuse is exceedingly
difficult. The tool delivers
documentation which aids
comprehension by employing multiple-
views of the software system. These
views communicate valuable
information (requirements, architecture,
process, and implementation) to all the
stakeholders, not just software
developers.

The EBTIC SPL tool is currently being
trailed and has demonstrated the potential
for improved software comprehension and
governance. The BT pilot on FIeldPlan
solution, a component of BT’s enterprise
resource management platform called
Field Optimisation Suite, has identified a
number of challenges, such as those
discussed earlier, for instance addressing
legacy systems and adapting the SPL way
of development. The trial was successfully
able to overcome these challenges and

THE JOURNAL TJ

31TRANSFORMING TELECOMMUNICATIONS SERVICE EXECUTION

Figure 3: The services provided by EBTIC SPL tool.

THE JOURNAL TJ

SALWA ALZAHMI, SID SHAKYA, IVAN BOYD

highlighted a number of benefits:
• Improved governance of outsourced

software – as the structure of a
software system can be captured in a
platform-independent manner via
reverse engineering of legacy code, the
ability to bring outsourced work in-
house or use a different supplier is
significantly improved.

• Transformed way of productionising
software assets – BT collaborates with
a number of. The tool enables BT to
have visibility of all the features in its
software assets when engaging with
the various stakeholders throughout the
development cycle.

• End-to-end traceability – the capability
of the tool to capture features and
demonstrate end-to-end traceability
improves the governance process and
leads to better software assets reuse.

AUTHORS’ CONCLUSIONS

As software increasingly underpins the
services that telcos deliver to customers,
the importance of understanding and
applying the best of modern software
engineering practices is critically important
to service quality, speed of new service
delivery and service flexibility. SPL is one of
the most important modern software
engineering approaches that telcos should
be considering, given its success in
delivering improved productivity in other
software sectors. EBTIC has created a SPL
tool which is being used to investigate the
potential benefits of SPL to telco product
development and maintenance. The initial
results are encouraging and further trials
are planned.

ABOUT THE AUTHORS

Salwa Alzahmi is a
research associate with
EBTIC at Khalifa University,
Abu Dhabi. She obtained
her Master’s degree from
Khalifa University in 2014. She has over 9
years’ experience in software engineering
R&D. Her main research interests are in
software product line and model-based
engineering, with an emphasis on
developing techniques and tools to
improve software quality analysis. She has
won a number of local and international
prestigious awards. Salwa’s goal is to turn
software research findings into practical
solutions.

Dr. Sid Shakya is a
principle researcher at BT,
currently working with
EBTIC at Khalifa University,
Abu Dhabi. He leads R&D
activities in resource
management and telecom

services optimization. He has extensive
experience of delivering intelligent
software solutions to improve business
processes. He is interested in practical

applications of AI, particularly for business
modelling and operational transformation.
He has co-authored over 50 papers, filed 9
patents and won numerous awards for his
work in applying AI techniques for
industrial problems.

Dr Ivan Boyd is director
of an independent
telecommunications
consultancy, having
previously worked for BT
for almost 30 years.
During his BT career he

managed global research teams and led a
wide range of telecommunications
research programmes from inception
through to delivery. He now helps
companies to optimise their research and
innovation processes and secure
Intellectual Property Rights. He also
contributes directly to their technical
research programmes. Ivan is a member of
the ITP Editorial Board.

Volume 11 | Part 2 - 2017

32

ABBREVIATIONS

NF Network Function
NFV Network Function Virtualisation
SFC Service Function Chain
SPL Software Product Line

ITP INSIGHT CALL
Want to know more?
Join in the ITPInsight Call. Visit:
https://www.theitp.org/calendar/

REFERENCES

1. Huff, N., Glover, C., and Hillman, M. How Software Maintenance Fees are Siphoning
Away Your IT Budget – and How to Stop It. 2014. Available at:
https://spendtrends.accenture.com/wp-content/plugins/pdfjs-viewer-
shortcode/web/viewer.php?file=https://spendtrends.accenture.com/wp-content/uplo
ads/2015/05/Accenture-How-Software-Maintenance-Fees-are-Siphoning-IT-Budget-
Procurement-BPO.pdf&download=true&print=true&openfile=false

2. McIlroy, D. Mass Produced Software Components. Proceedings of NATO Software
Engineering Conference, Germany, pp. 79-85. 1968. Available at:
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.PDF

3. Parnas, D. On the Criteria To Be Used in Decomposing Systems into Modules.
Communications of the ACM, vol. 15, pp. 1053-1058, 1972. Available at:
https://www.cs.umd.edu/class/spring2003/cmsc838p/Design/criteria.pdf

4. Pohl, K., Bockle, G., and van der Linden, F. Software Product Line Engineering.
Springer, 2005

5. Case Studies. Software Engineering Institute, 2017. Available at:
http://www.sei.cmu.edu/productlines/casestudies/

6. Krueger, C. and Clements, P. Systems and Software Product Line Engineering.
BigLever Software, Texas, 2013. Available at:
http://www.biglever.com/extras/PLE_SE_Encyclopedia_2013.pdf

